In the electronic world D. Mohankumar is the most famous name his creations are very importent every time. Efficiency of a solar charging system depends on the weather conditions. Usually the solar panel gets four to five hours of bright sunlight in a day. If the weather is cloudy or rainy, it affects the charging process and the battery does not attain full charge. This simple hybrid solar charger can solve the problem as it can charge the battery using both solar power as well as AC mains supply. When output from the solar panel is above 12 volts, the battery charges using the solar power. When the output drops below 12 volts, the battery charges through AC mains supply.
Working of the circuit is simple. When output from the solar panel is 12 volts or more, zener diode ZD1 conducts and provides 11 volts to the inverting terminal of IC1. Since its non-inverting input gets a higher voltage at this time, the output of the comparator turns high and the same is indicated by glowing green LED1. Transistor T1 then conducts and relay RL1 energizes. Thus the battery gets charging current from the solar panel through the normally-open (N/O) and common contacts of relay RL1.



An actual-size, single-side PCB for the hybrid solar charger is shown in Fig. 3 and its component layout in Fig. 4. After assembling the circuit on PCB, enclose it in a suitable box. Use high-gauge (thick) wires to connect the solar panel and the battery to the circuit.
To test the circuit for proper functioning, remove the solar panel from connector SP1 and connect a DC variable voltage source. Set some voltage below 12V and slowly increase it. As the voltage reaches 12V and goes beyond, the logic at test point TP2 changes from low to high. The transformer-based power supply voltage can be checked at test point TP3.
0 comments:
Post a Comment